
Abstract

In this note I describe a procedure which allows us to correctly use

the current sample of produced crossings to calculate (trigger) rates.

The method uses weights to get the best statistical power from the

current sample. The method requires some information about each

event to correctly compute the weight. Since this information is not

yet available, average weights were used to test the correctness and

statistical power of the weighting method. The results are promising.



1 Introduction

As discussed in the note \Calculating Trigger Rates in the Presence of Pileup"

by S. Eno and P. Sphicas, the problem of computing those trigger rates

which may come from the sum of several events in a crossing is diÆcult.

The purpose of this calculation is to make an attempt to use the existing

production, or one like it, to compute trigger rates that may be due to the

sum of events, with more statistical precision than in the methods proposed

in the above mentioned note (which you should read to understand the issues

addressed here).
CMS has produced crossings in which the \�rst event" is constrained to

come from some P̂T bin to which pileup events are added. The pileup events

are minimum bias events and have the physically expected distribution of
jets including those at high P̂T . There are 17.3 pileup events from the same

crossing plus more from other crossings. The \�rst event" bin distribution
produced emphasizes high P̂T bins which are more likely to be accepted by
the triggers. That is, we produced more events in high P̂T bins than expected

from the cross sections so that we would have good statistics on rare processes
that trigger us. The goal is to do a calculation with small statistical errors
yet avoid double counting due to high P̂T events in pileup.

To get small statistical errors with the limited sample we have, we cannot
rely on the pileup to simulate rare events. There are too many crossings per

second. We must rely on the events binned in P̂T . This means we cannot
treat the binned events as if they are only the �rst event; we must use them
as if they could be any of the 17.3 events in a crossing.

The approach attempted here is to compute a weight for each event that

will allow us to do this.

2 The Calculation of the Weight

Assume we have Nbin bins in P̂T and that a given crossing has

(n1; n2; :::; nNbin
) � ~n

events from those bins. The probability to have this distribution of events in
bins is

P (~n) =
NbinY

i=1

e�fi�(fi�)
ni

ni!
:
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In the production, we generated Nj crossings in which the �rst event was

required to be in the jth P̂T bin. Given these numbers Nj, the probability

that one of the generated crossings have the distribution in bins given by ~n

is

P̂ (~n) =
NbinX

j=1;nj 6=0

Nj

N

e�fj�(fj�)
nj�1

(nj � 1)!

Y

i6=j

e�fi�(fi�)
ni

ni!
:

P̂ (~n) =
NbinX

j=1;nj 6=0

Nj

N

nj

fj�

NbinY

i=1

e�fi�(fi�)
ni

ni!
=

NbinX

j=1

Nj

N

nj

fj�

NbinY

i=1

e�fi�(fi�)
ni

ni!

To weight these events so the they give a trigger rate we need to multiply

by the bunch crossing rate, divide by the total events generated, and correct

for the relative probabilities.

W (~n) =
32� 106

N

P (~n)

P̂ (~n)

where N =
NbinP
j=1

Nj.

A little arithmetic gives

W (~n) =
32� 106�
NbinP
j=1

Nj
nj

fj

:

This is the weight to use for each event given ~n. Once the ~n is available
for production events, we can use this to get a correct and statistically more
accurate prediction of the trigger rates.

These weights should be useful for the computation of any trigger rate.

We do not need to assume that the trigger is based on one event. The sta-

tistical power will be greatly improved compared to the \�rst event method"
of section 6.1 of the Eno and Sphicas note. The weighting method makes no

approximation. At this time we do not have the information saved per event

to compute the weight. One would hope that we will have this information

in the next production, or even better, that it could be recovered for the ex-

isting production. (If we have the information, we could also use the weight
to remove 
uctuations by counting the actual number of events of each type

and weighting to the expected.)
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3 Average Weights for a Bin

Since we may not have enough information for now, we can try to compute

an average weight for each bin that will correct as well as we can for double

counting. This is an approximation since all the events in a P̂T bin will

be given the same weight. For processes in which several high P̂T events

conspire to give a trigger, this average weight could lead to an overestimate

of the trigger rate. We need to test whether this is true. In any case, the

calculation of the average will allow us to test the validity of the weight

calculation and will help us determine the statistical power of the method.
For the kth bin,

�Wk =
X

~n

W (~n)Pk(~n)

where Pk(~n) is the probability to get the bin distribution given by ~n for the
event we generated in bin k.

Pk(~n) =
e�fk�(fk�)

nk�1

(nk � 1)!

Y

i 6=k

e�fi�(fi�)
ni

ni!
:

Plugging this in we get

�Wk =
X

~n;nk 6=0

32� 106�
NbinP
j=1

Nj
nj

fj

e�fk�(fk�)
nk�1

(nk � 1)!

Y

i6=k

e�fi�(fi�)
ni

ni!

�Wk = 32� 106�
X

~n;nk 6=0

1
NbinP
j=1

Nj
nj

fj

nk

fk�

NbinY

i

e�fi�(fi�)
ni

ni!

�Wk = 32� 106
X

~n

nk

fk
NbinP
j=1

Nj
nj

fj

NbinY

i

e�fi�(fi�)
ni

ni!

This can be computed numerically and saved for weighting the distri-

butions. The sum over ~n represents Nbin sums from 0 to in�nity, but, in

practice, only a few terms contribute and the whole calculation can be done
an hour on one slow computer.

The table shows the weight for each bin, which has units of Hz. Simply

use this weight for each crossing in the bin to get a rate. The \Rate" column
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P̂T Bin Weight Rate Hz Wt. relative to \1st event method"

0-10 112.164 10454229 0.3963
10-15 94.0227 8912189 2.1174

15-20 50.8531 6545203 7.1572

20-30 22.0589 4547049 11.7703

30-50 13.0147 1297412 13.6617

50-80 6.3129 202261 15.3346
80-120 1.9336 31205 16.6349

120-170 0.4768 5492 17.1263

170-230 0.8715 1115 16.9890
230-300 0.2074 266 17.2223

300-380 0.0544 70 17.2780

380-470 0.0155 21 17.2924

Total 31.997

Table 1: Result of average weight calculation

shows the contribution to the total rate (no trigger requirement). It is a check
of the method that it adds up to 32 MHz. This clearly indicates that the
calculation is working. The last column show the relative weight compared

to the \�rst event method". The relative weight approaches 17.3 in the high
bins, which is what I would expect if we can use the high P̂T event as any one

of the 17.3 events. The relative weight is low for the lowest bin indicating
we rely less on the pileup.

Since there can only be one set of completely correct weights and Eno

and Sphicas have proven the \�rst event" weights are correct, these weights
must not be fully correct. Again this is due to the averaging procedure.

They clearly give the right answer for no trigger cut, should give the right

answer in the case that the trigger depends on one event from the crossing,
but might overestimate the rate in between. Again, if we did not have to

average and could apply a weight on an event by event basis, this method
should give a correct result.
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4 Trying the Average Weight Method on the

MET Trigger

As a check of the average weight method, we calculated the di�erential Miss-

ing Energy rate (rather than integrating to get a trigger rate as a function

of threshold). As stated before, the calculation correctly reproduces the (as-

sumed) 32 MHz crossing rate. The fear is that the calculation with average
weights will over estimate the rate a larger missing energy, where multi-

ple events contribute to the trigger. The �gure shown below compares the

weighted result (black) to pure pileup (red) and to the \�rst event method"
(blue).
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The overestimation is visible but not too large and, at high values of the

Missing Energy, the weighted calculation gives much smoother distribution.

The pileup events reach the one event level then disappear. The \one event
method" also su�ers a big drop when the pileup event disappear because

the binned events are basically only used to give 1

17
of the large missing

energy signal. For the weighted method also sees a drop as the pileup events

disappear but it is not so severe. The pileup events do have too high a weight,

indicating we need more of them, however, I expect the situation to improve

when event by event weighting is possible. the pileup events giving large
missing energy should get smaller weights.

5 How Well are We Sampling?

A small modi�cation of the average weight program allows us to calculate the

expected number of crossings of a speci�ed type in the HLT sample. We can

use this to see how well certain event types are represented in the sample. I
did a small study of this as shown in the table below.

Events in Bins (0-11) Rate (Hz) Equiv. Pileup (Million Crossings)

n5 = 1 n6 = 1 400 21

n6 = 1 n7 = 1 100 83
n8 = 1 19000 37

n3 = 2 n4 = 2 11000 6.2

n4 = 2 n5 = 2 17 13
n3 = 3 n4 = 2 850 7.4

n6 = 2 300 32

Table 2: Rate in Hz and Equivalent pileup sample for some speci�c crossing

requirements. We require exactly ni events in bin i for one or two bins and
sum over numbers in the other bins.

I tried to pick crossing con�gurations that had a reasonable rate, from a

few Hz to a few hundred Hz. In every case tested, the binned HLT sample was

equivalent to several million pileup crossings. This indicates the statistical

power of the binning method. Even crossing patterns with multiple high P̂T

events are very signi�cantly enhanced in the HLT sample compared to pure

pileup. The lowest equivalent crossing numbers come from con�gurations
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with multiple events in the lower bins which are relatively plentiful even in

the pileup sample.

My conclusion here is that the HLT crossings, binned as they are, are
statistically quite powerful. If we use this statistical power correctly, our

sample is equivalent to about 0.5 seconds of pure pileup crossings.

6 Conclusion

The weights calculated here will allow us to make use of the HLT production

to determine trigger rates with good accuracy, even those rates dominated by

multiple events per crossing adding to produce a trigger. The basic weight
calculation involves no additional approximation, but, requires information

about the produced events.
Using average weights per bin of produced events, again gives statistical

power but may overestimate rates in the multiple event dominated triggers.

We have looked at the most diÆcult trigger, Missing Energy, and found that
the approximation only slightly over predicts rates, but, gives good statistical

errors.
The weights given should give systematically better results for other trig-

gers, which are dominated by single events in a crossing.

If we use the weighting method, the binned sample we have is approxi-
mately equivalent to 0.5 seconds (16 million) of pure pileup events.
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